Battery Cloud: Data-Powered Intelligent Battery Management for Mobile and Stationary Battery Systems

12th International Advanced Battery Power Conference
Münster, Germany

3/24/2020
Weihan Li
Monika Rentemeister, Julia Badea, Dominik Jöst, Dominik Schulte, Dirk Uwe Sauer

Chair for Electrochemical Energy Conversion and Storage Systems
Motivation

Performance Safety Longevity

Smart BMS + Big data based algorithms
Digital Twin for Battery Systems

- Computation capability
- Data storage capability
- System reliability

Agenda

1	Digital Twin: Cloud Battery Management System
2	Digital Twin: Monitoring and Diagnostics
3	Field Validation of Cloud BMS Functionalities
4	Experimental Validation of Diagnostic Algorithms
5	Conclusion and Future Work
Agenda

1. Digital Twin: Cloud Battery Management System
2. Digital Twin: Monitoring and Diagnostics
3. Field Validation of Cloud BMS Functionalities
4. Experimental Validation of Diagnostic Algorithms
5. Conclusion and Future Work
Digital Twin: Cloud Battery Management System

- Battery Systems
 - Data Generation
- BMS-Slave
 - Data Sensing
- IoT Component
 - Data Collection
- Cloud
 - Data Storage
- API
 - Data Analytics
- UI
 - Data Visualization

Data Generation → Data Sensing → Data Collection → Data Storage → Data Analytics → Data Visualization
Digital Twin: Life cycle monitoring and optimization

Monitoring and Diagnostics

Fault Diagnostic and Prediction

Lifetime Prediction

Evaluation and Optimization
<table>
<thead>
<tr>
<th></th>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital Twin: Cloud Battery Management System</td>
</tr>
<tr>
<td>2</td>
<td>Digital Twin: Monitoring and Diagnostics</td>
</tr>
<tr>
<td>3</td>
<td>Field Validation of Cloud BMS Functionalities</td>
</tr>
<tr>
<td>4</td>
<td>Experimental Validation of Diagnostic Algorithms</td>
</tr>
<tr>
<td>5</td>
<td>Conclusion and Future Work</td>
</tr>
</tbody>
</table>
Digital Twin: Monitoring and Diagnostic

- Seamlessly monitoring of the battery cells.

- By bridging the physical and the virtual world, data is transmitted seamlessly allowing the virtual entity to exist simultaneously with the battery systems.
Digital Twin: Monitoring and Diagnostic

- Continuous updating of the cell parameters.
- Identification of various system parameters
 - Cell remaining capacity (SoC)
 - Cell impedance (SoH-R)
 - Cell capacity (SoH-C)
 - Pack impedance
 - Pack capacity
- Algorithms based on physical, electrochemical, and machine learning models
Model-Based State of Charge Estimation

- Model-based state estimation
 - High robustness and accuracy

- Equivalent circuit model
 - Extended Thevenin model with two RC pairs

- State observer
 - Adaptive extended H-infinity filter
 - Covariance machine technique
Artificial Intelligence for State of Health Estimation

- **Particle Swarm Optimization**
 - Population-based and gradient-free global optimization method.
 - The optimal solution is searched by improving the candidate solutions based on the measure of quality.

- **Time-domain parameter identification**
 - PSO algorithm tuning ECM parameters based on the real-world driving data.
 - Both SoH-R and SoH-C are estimated.

Agenda

1. Digital Twin: Cloud Battery Management System
2. Digital Twin: Monitoring and Diagnostics
3. Field Validation of Cloud BMS Functionalities
4. Experimental Validation of Diagnostic Algorithms
5. Conclusion and Future Work
Field Validation of the Cloud BMS Functionalities

- Voltage measurement
- Temperature measurement
- Current measurement
- BMS-Slave
Field Validation of the Cloud BMS Functionalities

- Real-time remote monitoring
 - Voltage
 - Current
 - Temperature

- Verification
 - Data sensing
 - Data collection
 - Data storage
 - Data visualization
Agenda

1. Digital Twin: Cloud Battery Management System
2. Digital Twin: Monitoring and Diagnostics
3. Field Validation of Cloud BMS Functionalities
4. Experimental Validation of Diagnostic Algorithms
 4.1 Multi-use Stationary Battery System
 4.2 Automotive Battery System
5. Conclusion and Future Work
Chair for Electrochemical Energy Conversion and Storage Systems

Weihan Li

3/24/2020

Agenda

1. Digital Twin: Cloud Battery Management System
2. Digital Twin: Monitoring and Diagnostics
3. Field Validation of Cloud BMS Functionalities
4. Experimental Validation of Diagnostic Algorithms
 4.1 Multi-use Stationary Battery System
 4.2 Automotive Battery System
5. Conclusion and Future Work
Experimental Validation of the Diagnostic Algorithms

Battery tester

Battery system

Slave-BMS

Sensors

CAN

MQTT

Raspberry Pi

Cloud

MQTT

Battery tester

Battery system

Slave-BMS

Sensors

CAN

MQTT

Raspberry Pi

Cloud

MQTT
Experimental Validation of SoC Algorithm with Lead-acid Batteries

- A dynamic current profile with pulses
 - Multi-use stationary battery system

- Voltage estimation
 - Mean absolute error: 0.01 V

3/24/2020 | Weihan Li
Chair for Electrochemical Energy Conversion and Storage Systems
Experimental Validation of SoC Algorithm with Lead-acid Batteries

- SoC estimation
 - Mean absolute error: 0.06%.

- Self-regulation ability
 - Both voltage and SoC converges fast to real values
Agenda

1. Digital Twin: Cloud Battery Management System
2. Digital Twin: Monitoring and Diagnostics
3. Field Validation of Cloud BMS Functionalities
4. Experimental Validation of Diagnostic Algorithms
 4.1 Multi-use Stationary Battery System
 4.2 Automotive Battery System
5. Conclusion and Future Work
Experimental Validation of SoC Algorithm with Lithium-ion Batteries

- High dynamic real-world driving data
 - Samsung 35e, NCA+Graphite/Si

- Voltage estimation
 - Mean absolute error: 0.01 V
Experimental Validation of SoC Algorithm with Lithium-ion Batteries

- **SoC estimation**
 - Mean absolute error: 0.49%

- **Self-regulation ability**
 - Both voltage and SoC converges fast to real values
Experimental Validation of SoH Algorithm with Lithium-ion Batteries

- Convergence performance of the fitness value
 - Fitting error of the voltage data

- Convergence performance of the cell parameters
 - Parameters converge after 600 iterations
Experimental Validation of SoH Algorithm with Lithium-ion Batteries

- **SoH-C estimation**
 - Compared with capacity test with C/3
 - Mean absolute error is 0.74%

- **SoH-R estimation**
 - Compared with Ohmic resistance @ 1C, 80%SoC
 - Mean absolute error is 1.70%
Agenda

1. Digital Twin: Cloud Battery Management System
2. Digital Twin: Monitoring and Diagnostics
3. Field Validation of Cloud BMS Functionalities
4. Experimental Validation of Diagnostic Algorithms
5. Conclusion and Future Work
Conclusion and Future Work

- Cloud BMS for digital twin of battery systems
- Model-based SoC estimation algorithm for both lead-acid and lithium-ion batteries
- Particle swarm optimization-based SoH estimation algorithm for both capacity fade and power fade
- Field and experimental validation of the monitoring and diagnostics for digital twin
- In the future work, other functionalities will be developed for cloud BMS
 - Lifetime prediction
 - Fault diagnostic
 - Evaluation and optimization
- For more information please refer to:
Thank you for your attention

Contact

Weihan Li
Tel.: +49 241 80-49415
weihan.li@isea.rwth-aachen.de
batteries@isea.rwth-aachen.de

Chair for Electrochemical Energy Conversion and Storage Systems
Univ.-Prof. Dr. rer. nat. Dirk Uwe Sauer
RWTH Aachen University

Jaegerstrasse 17/19
52066 Aachen
GERMANY
www.isea.rwth-aachen.de

We thank
Battery Cloud: Data-Powered Intelligent Battery Management for Mobile and Stationary Battery Systems

12th International Advanced Battery Power Conference
Münster, Germany

6/17/2020
Weihan Li
Monika Rentemeister, Julia Badeda, Dominik Jöst, Dominik Schulte, Dirk Uwe Sauer

Chair for Electrochemical Energy Conversion and Storage Systems